Robust Automatic Target Recognition via HRRP Sequence Based on Scatterer Matching

نویسندگان

  • Yuan Jiang
  • Yang Li
  • Jinjian Cai
  • Yanhua Wang
  • Jia Xu
چکیده

High resolution range profile (HRRP) plays an important role in wideband radar automatic target recognition (ATR). In order to alleviate the sensitivity to clutter and target aspect, employing a sequence of HRRP is a promising approach to enhance the ATR performance. In this paper, a novel HRRP sequence-matching method based on singular value decomposition (SVD) is proposed. First, the HRRP sequence is decoupled into the angle space and the range space via SVD, which correspond to the span of the left and the right singular vectors, respectively. Second, atomic norm minimization (ANM) is utilized to estimate dominant scatterers in the range space and the Hausdorff distance is employed to measure the scatter similarity between the test and training data. Next, the angle space similarity between the test and training data is evaluated based on the left singular vector correlations. Finally, the range space matching result and the angle space correlation are fused with the singular values as weights. Simulation and outfield experimental results demonstrate that the proposed matching metric is a robust similarity measure for HRRP sequence recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Feature Learning Model for Sequential Radar High Resolution Range Profile Recognition

This paper proposes a new feature learning method for the recognition of radar high resolution range profile (HRRP) sequences. HRRPs from a period of continuous changing aspect angles are jointly modeled and discriminated by a single model named the discriminative infinite restricted Boltzmann machine (Dis-iRBM). Compared with the commonly used hidden Markov model (HMM)-based recognition method...

متن کامل

Radar HRRP Modeling using Dynamic System for Radar Target Recognition

High resolution range profile (HRRP) is being known as one of the most powerful tools for radar target recognition. The main problem with range profile for radar target recognition is its sensitivity to aspect angle. To overcome this problem, consecutive samples of HRRP were assumed to be identically independently distributed (IID) in small frames of aspect angles in most of the related works. ...

متن کامل

Robust Iris Recognition in Unconstrained Environments

A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...

متن کامل

Use of 3D ship scatterer models from ISAR image sequences for target recognition

Traditionally, Inverse Synthetic Aperture Radar (ISAR) image frames are classified individually in an automatic target recognition system. When information from different image frames is combined, it is usually in the context of timeaveraging to remove statistically independent noise fluctuations between images. The sea state induced variability of the ship target projections between frames, ho...

متن کامل

Radar Hrrp Target Recognition Using Multi- Kfd-based Lda Algorithm

Linear double-layered feature extraction (DFE) technique has recently appeared in radar automatic target recognition (RATR). This paper develops this technique to a nonlinear field via parallelizing a series of kernel Fisher discriminant (KFD) units, and proposes a novel kernel-based DFE algorithm, namely, multi-KFD-based linear discriminant analysis (MKFD-LDA). In the proposed method, a multiK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018